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Dynamic interaction between a boundary layer of air and a liquid film is investigated
in this paper. The low air-to-film-viscosity ratio is considered in which case the
boundary layer is quasi-steady on the time scale within which interfacial waves
develop. The base flow consists of a boundary layer that drags a film of constant
shear. Linear analysis, in the context of triple-deck theory, predicts the formation of
a wavepacket of capillary waves that advances and spreads with time. The Froude
number of de-/anti-icing fluids or water interacting with air falls well within the
supercritical regime, i.e. Fr >FrCr . Numerical simulations of such flow systems were
performed in the context of triple-deck theory, and they do not exhibit wave saturation
or formation of uniform wavetrains. The long-term interaction is mainly dependent on
film inertia as this is characterized by parameter M= (µ/µf )2(ρf /ρ), which involves
film and air viscosity and density ratios, and the dimensionless film thickness, H0,
and shear, λ, provided by the base flow. Weakly nonlinear analysis taking into
consideration mean drift, i.e. generation of long waves, due to self-interaction of the
linear wave to O(ε2) in amplitude of the initial disturbance, reveals resonance between
the wavepacket predicted by linear theory and long waves when the group velocity
of the former happens to coincide with the phase velocity, H0λ, of long interfacial
waves. Numerical simulations with anti-icing fluids and water verify this pattern. In
both cases, long waves eventually dominate the dynamics and, as they are modulated
with time, they lead to soliton-type structures. Anti-icing fluids eventually exhibit
oscillatory spikes whose mean value never exceeds 2H0, roughly. Water films exhibit
a single spike that keeps growing, thus generating a large separation bubble.
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1. Introduction
We examine the nonlinear behaviour of interfacial waves that develop when a

subsonic laminar gas boundary layer interacts with a thin liquid film. Gas–liquid
interaction at high Reynolds number, Re, is presumed by many researchers to be
of central importance in airfoil performance under rainfall conditions or during
application of de-/anti-icing fluids. Bezos et al. (1992) reported that the interaction
of the boundary layer with the liquid film is responsible for changes in the effective
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camber of the airfoil, which negatively affects the airfoil performance within the entire
range of realizable angles of attack. Similarly, experiments that were performed on
commercial airfoils sprayed with anti-icing fluids (Hill & Zierten 1993) showed that
such fluids remain on the airfoil surface until well after take-off and that they are the
source of adverse aerodynamic effects, especially at large angles of attack.

There is limited experimental work available focusing on the development of
interfacial waves in the flow arrangement under investigation, especially in the
nonlinear regime. Nevertheless, relevant experimental measurements and preliminary
stability-analysis results were reported by Craik (1966) for the case of channel flow
interacting with a thin liquid film that grows on the lower flat wall. He was able
to capture a different kind of instability that does not appear when thicker films
are present. More specifically, he noticed that when the liquid film is thick, periodic
waves appear. These waves, which Craik refers to as ‘fast’ waves, are sinusoidal and
their speed is greater than the velocity of the interface. On the contrary, for thinner
films (0.0128–0.0307 cm) Craik observed non-periodic waves that have steep spikes
and move with velocity smaller than the velocity of the interface (‘slow’ waves).
In cases where the liquid’s thickness is even smaller, he captured the formation
of ‘dry’ regions on the solid surface. Ludwieg & Hornung (1989), using a simple
visualization technique, captured interfacial waves and their effect in transition for
boundary-layer interaction with an oil film. They also performed stability analysis
which, in agreement with the subsequent linear-stability results in the context of
the triple-deck theory by Timoshin (1997), verified that the interfacial waves that
they observed essentially correspond to the most strongly amplified wave predicted
by the stability analysis. Finally, Ozgen, Carbonaro & Sarma (2002) used different
de-/anti-icing fluids deposited on the lower wall of a wind tunnel that was sheared
by a turbulent airflow. The above researchers tried to determine the characteristics of
the observed waves by using a light-absorption technique and compared them with
linear theory. They observed periodic waves with velocities greater than the velocity
of the interface, but for thinner films, they captured non-periodic waves as well as dry
regions.

As far as the evolution of interfacial waves is concerned, linear stability analysis is
typically used to provide the dominant wavenumbers and their growth rates depending
on the flow parameters, namely Reynolds, Weber and Froude numbers as well as
density and viscosity ratios. The Orr–Sommerfeld stability equations are commonly
employed in the context of channel, e.g. Craik (1966) and Yiantsios & Higgins (1988),
or boundary-layer flows, e.g. Ludwieg & Hornung (1989) and Ozgen et al. (1998).
The main findings of this line of research are the dominance of Tolmien–Schlichting
waves as far as growth rates are concerned and the shorter wavelengths associated
with interfacial waves, especially for large film-to-gas-viscosity ratio. Assuming a
quasi-laminary approach in his stability analysis, Craik (1966) identified the role
of tangential stress in destabilizing capillary waves for a wide range of air stream
velocities, provided the water film remains sufficiently thin. Stability analysis based
on the triple-deck theory (Timoshin 1997; Pelekasis & Tsamopoulos 2001) verifies the
importance of interfacial waves in the limit of large free-stream Reynolds numbers,
even though their growth rate is lower than that of the Tollmien–Schlichting (T–S)
waves. In addition, it was shown by Pelekasis & Tsamopoulos (2001) that interfacial
waves are absolutely unstable within a parameter range that is relevant to the case
of high-Re flow above a thin water film. Therefore, it was suggested that the liquid
film that covers an airfoil may be responsible for reduction of the lift coefficient,
possibly through premature boundary-layer separation as a result of their interaction.
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It is, however, important to ascertain the persistence of the above phenomena in the
nonlinear regime of the present study.

A recent numerical study by Vlachomitrou & Pelekasis (2009) based on the
nonlinear triple-deck formulation, hereinafter referred to as I, revealed the formation
of spikes during growth of interfacial waves, leading to solitons with height that
varies significantly depending on film inertia. The latter is determined by parameter
M=(µ/µw)2ρw/ρ. In addition, it was shown that for viscous films (µ/µw � 1), T–S
waves grow on a much faster time scale than interfacial waves and that the flow in
the gas phase is quasi-steady on the time scale within which interfacial waves grow.

Most of the relevant studies focus on the linear regime of wave growth. Comparisons
against theoretical predictions are also mostly restricted to linear stability analysis.
In this study, an effort is made to interpretavailable experimental and numerically
obtained results in the context of weakly nonlinear and nonlinear theories. To this
end, we focus on the evolution of interfacial waves that develop when a gas boundary
layer interacts with a thin liquid film, i.e. water or anti-icing fluids. Due to very
disparate time scales governing the development of interfacial and T–S waves, we
assume that all changes in the gas phase occur solely as a result of changes in
the shape of the interface. Thus, we treat the gas phase as quasi-steady. This is a
well-justified assumption for systems characterized by negligibly small viscosity ratio,
as is the case with films consisting of water or de-/anti-icing fluids, which essentially
allows us to decouple the development of interfacial waves from that of T–S waves.
In this fashion the evolution of interfacial waves is studied at large times and/or
relatively large amplitudes of the initial disturbance. Subsequently, an effort is made
to predict the behaviour of growing waves based on linear and weakly nonlinear
analyses. The governing equations describing the nonlinear triple-deck formulation of
the problem for air–water or air–de-/anti-icing fluid interaction are provided in § 2.
In this framework, and as far as the linear regime is concerned, nonlinear simulations
for the air–water and the air–deicing fluid systems performed in I indicate that linear
stability analysis (Pelekasis & Tsamopoulos 2001) adequately describes the evolution
of the unstable wavepacket over a certain time interval. Elements of the linear stability
analysis for the air–film systems studied herein, as well as the methodology used to
obtain the relevant group velocities of the unstable wavepacket are provided in § 3.1.

The possibility for steady travelling waves is also of interest near and beyond
the critical region, in terms of the Froude number, where interfacial waves first
become unstable. Such a possibility was shown by Blennerhassett (1980) for stratified
Poiseuille and Couette flow in a channel, by resorting to the nonlinear Schrödinger
equation describing the evolution of linearly unstable waves near criticality. It should
be stressed, however, that due to the very large critical Reynolds numbers obtained
with increasing critical wavenumber as the thickness ratio between the top and bottom
layers increased, numerical evaluation of the Schrödinger constants in that parameter
range was rather ambiguous. Since the triple-deck approach is valid as Reynolds
number becomes very large, regions near the film–air interface are accurately resolved
numerically while Reynolds number is eliminated from the problem parameter set.

However, mode saturation and a steady travelling wave with the characteristics
provided by linear stability analysis, E =exp(i(kX − ωrT )), with k and ωr denoting
the wavenumber and frequency of the unstable mode, was never observed in the
nonlinear simulations performed in I even for values of the Froude number near
criticality. Simulations presented in I pertaining to films of anti-icing fluids or water
interacting with a boundary layer, i.e. when Fr >FrCr , revealed long-wave formation
as a precursor to solitons. The latter waveforms exhibited oscillatory maximum height
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in the case of anti-icing fluids, in the manner predicted by Djordjevic & Redekopp
(1977) and Ma & Redekopp (1979) as a result of short- to long-wave resonance for
capillary Stokes waves. In order to obtain insight regarding growth of unstable modes
near criticality as well as mode interaction and resonance, the nonlinear Schrödinger
equation is derived for the case with negligible film inertia. This flow situation
pertains to the air–de-/anti-icing fluid system and is easier to handle analytically via
the multiple-time-scale method. This approach will provide the underlying mechanism
behind the phenomena observed in I as well as in certain experimental observations,
e.g. Craik (1966). In the case of water films, the soliton-type structure that was
captured assumed the form of a single growing spike that exhibited unlimited growth,
cusp formation and eventually a singularity in the pressure gradient.

A singular behaviour of the latter type was predicted by Brotherton-Ratcliffe &
Smith (1987) and Smith (1988) in nonlinear studies on the dynamics of boundary
layers over surface distortions, and was identified as a finite-time singularity of
the triple-deck formulation. In fact, the importance of Schroedinger’s equation in
the early stages of nonlinear development of high-frequency T–S disturbances in a
boundary layer was first recognized by Smith & Burggraf (1985) and Smith (1986),
where it was also pointed out that sideband instabilities did not occur. Such high-
frequency disturbances also dominate in the present study as Fr increases beyond
criticality. In the above studies it was also shown that the long-time behaviour is
controlled by spikes whose evolution is governed by the Benjamin–Ono equation.
This is essentially the Euler equation for the displacement thickness with an integral
term substituted for the pressure gradient. More recently, in Kachanov, Ryzhov &
Smith (1993) and Li et al. (1998), it was shown that the Benjamin–Ono equation
is associated with solitary-wave interaction with evolving wavepackets, spike-soliton
formation and the initial stage of vorticity bursts and transition in boundary layers.
These associations were corroborated by experimental observations by Kachanov
et al. (1993). Furthermore, they were seen to persist and play a key role in the later
development of three-dimensional disturbances.

In order to assess the possibility for similar type of interactions leading to mean-
flow generation in the context of interfacial wave growth studied herein, i.e. evolution
of the long-wave component of the initial disturbance, mode interaction leading to
the E◦ component is accounted for and a Davey & Stewartson-type set of equations
is derived (Davey & Stewartson 1974) in § 3.2:

f =

∞∑
n=1

εnfn, fn =

n∑
m=0

fn,m(τ, ζ )Em + c.c., f1,0 = 0, f1,1 ≡ d, (1.1)

∂d

∂τ
+ S1

∂2d

∂ζ 2
= S2d + S3d|d|2 + S4f20d, (1.2)

(H0λ − cG)
∂f2,0

∂τ
= S5

∂ |d|2
∂ζ

. (1.3)

In the above equations ε is a measure of the amplitude of the primary interfacial
wave, f2,0 the mean-flow component of the interface obtained to second order in
the amplitude and S1, S2, S3, S4 and S5 are complex constants obtained in § 3.2; H0,
λ denote the dimensionless base flow film thickness and shear stress exerted on the
film by the surrounding boundary layer. When mean-flow development is neglected
the above set of equations is recast into the nonlinear Schrödinger equation. We
follow the work of Djordjevic & Redekopp (1977), who studied the motion of a
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two-dimensional packet of capillary–gravity waves on water of finite depth. They
examined the stability of the Stokes capillary–gravity wavetrain and identified a
resonant interaction between a capillary–gravity wave and a long gravity wave.
Resonance takes place when the group speed of the capillary wave matches the phase
velocity of a shallow-water gravity wave. In the same study they showed that the long-
wave component is generated by the self-interaction of the short wave. In this study
we investigate whether such a behaviour is present in the flow under consideration.
It should be stressed that even though the analysis presented here is not strictly valid
for the case of air–water interaction, due to film inertia, nevertheless the mechanism
identified for the case of de-/anti-icing fluids is also quite useful in explaining growth
of water films.

In §§ 4.1 and 4.2 numerical results are presented for the two fluid systems of
interest. The appearance of finite-time singularities (Smith 1988), front formation
(Saarlos & Hohenberg 1992; Couairon & Chomaz 1997) as well as the appearance
of spike solitons (Kachanov et al. 1993; Li et al. 1998) are discussed and interpreted
in the context of short- to long-wave resonance. Finally, conclusions are drawn in
§ 5 regarding the dominant mechanism behind spike formation in interfacial waves,
based on the findings of weakly nonlinear and numerical analyses.

2. Problem formulation
2.1. Base flow

We consider a thin liquid film of density ρw and viscosity µw that covers a flat
plate of characteristic length L. Above the film flows a gas stream of density ρ,
viscosity µ and free stream velocity U∞, Re = U∞ρL/µ � 1, which puts the film into
motion. The equations that describe the basic flow have been calculated numerically
as well as asymptotically (Smyrnaios, Pelekasis & Tsamopoulos 2000). In the limit
Hf /(LRe−1/2) → 0, where Hf is the film thickness and LRe−1/2 the thickness of
the boundary layer, the solution inside the boundary layer assumes the Blasius
profile. The shear rate exerted on the liquid film, as predicted based on the Blasius
solution evaluated on the interface, is λ=(∂U0/∂Y ′)(x, Y ′ = 0) ≈ (0.332/

√
x), Y ′ =

y ′/(LRe−1/2). Inside the liquid film the thickness and the velocity are

Ho(x) = x3/4

√
2

0.332
, uo(x, y) = x1/4z

√
0.664, z =

y

H0(x)
, (2.1a)

Ho(x) = x1/4

√
2

0.332
, uo(x, y) = x−1/4z

√
0.664, z =

y

H0(x)
, (2.1b)

when a constant rainfall (Smyrnaios et al. 2000) or a constant mass-flow rate
(Timoshin 1997) is assumed, respectively. The characteristic scales that have been
used in the gas phase are L and LRe−1/2 as characteristic length scales in the x and y
directions, respectively, and U∞ and U∞Re−1/2 as characteristic velocities in the x and
y directions, respectively. In the liquid film, L and Hf have been used as characteristic
length scales in the x and y directions, and uf and uf Hf /L as characteristic velocities
in the x and y directions, respectively. Relevant estimates of Hf and uf are provided
in Smyrnaios et al. (2000) and Nelson, Alving & Joseph (1995) for the case of a
steady rainfall rate, ṙ , and a constant mass-flow rate, Q, respectively, based on the
mass balance and shear stress balances written on the gas–liquid interface.
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2.2. Governing equations

We are interested in examining the nonlinear evolution of interfacial waves that appear
when airflow interacts with a thin liquid film. Assuming that the liquid film is much
more viscous than the gas we consider the limit µ/µw → 0. In this limit interfacial
waves evolve much slower than T–S waves, and therefore, a quasi-stationary state is
assumed in the gas phase.

Dimensionless quantities are introduced via the triple-deck characteristic scales
(Timoshin 1997; Pelekasis & Tsamopoulos 2001): length � =LRe−3/8 in the streamwise
direction and thickness LRe−5/8 in the perpendicular direction for both the gas
stream and the film. The film thickness as estimated by the base flow (Smyrnaios
et al. 2000) is indeed of the order Hf = LRe−5/8. The characteristic velocities in
the gas phase are δU∞ in the streamwise direction and δ3U∞ in the perpendicular
direction, where δ = Re−1/8, whereas in the liquid phase, the characteristic velocities
are uf = (µ/µw)δU∞ and (µ/µw)δ3U∞ in the streamwise and perpendicular directions,
respectively. The quantity δ2ρU 2

∞ is used as a pressure scale for both phases. The
above scales are obtained as a result of balancing inertia, and viscous and pressure
terms in the lower deck. Finally, the time scale appropriate for the development of
interfacial waves, T̂ = �/uf = �/(δ(µ/µw)U∞), is introduced in order to make time
dimensionless.

In the gas phase we use the transformed variable Y = Y − H (X, T ), where H is the
film thickness and X a local longitudinal coordinate around x0, X =(x − x0)/Re−3/8.
Moreover, we introduce Prandtl’s transposition via the variable V , where V =
V − U (∂H/∂X) − (µ/µw)(∂H/∂T ). Therefore, the dimensionless equations that
describe the flow in the viscous sublayer of the boundary layer are as follows:

X-momentum:

µ

µw

∂U

∂T
+ U

∂U

∂X
+ V

∂U

∂Y
= −∂P

∂X
+

∂2U

∂Y
2

or
µ

µw

∂U

∂T
+ U

∂U

∂X
− ∂Ψ

∂X

∂U

∂Y
= −∂P

∂X
+

∂2U

∂Y
2
,

(2.2a, b)

where U = ∂Ψ /∂Y is the longitudinal velocity component. Since this study focuses
on the evolution of interfacial waves in a passive gas phase (see simulations in I),
the time derivatives in the x -momentum are dropped. Y-momentum establishes the
pressure as being independent of the transverse direction:

∂P

∂Y
= 0. (2.3)

The pressure is related to the displacement thickness by the interaction law. This law
emerges from the solution of Laplace’s equation in the upper deck of the boundary
layer:

P =
1

π

∫ +∞

−∞

∂A

∂s

ds

x − s
. (2.4)

Continuity of velocity between the main and upper deck gives

U (Y → ∞) = λ(A(X) + Y + H − H0), (2.5)

where λ= ∂U0/∂Y ′ (x, Y ′ = 0) and H0 refers to the dimensionless shear rate on the
flat plate and the film thickness, as predicted by the base solution.

In the liquid film we introduce the transformed variable y = y/H (X, T ) along with
the triple-deck length and time scales. Thus, conditions on the gas–liquid interface,
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Y = 0, y = 1, read as follows:
Continuity of tangential and normal velocities:

U =
µ

µw

u,
∂Ψ

∂X

∣∣∣∣
Y

= 0, (2.6a, b)

continuity of tangential and normal stresses:

∂U

∂Y
=

1

H

∂u

∂y
, P − p =

1

We

∂2H

∂X2
, (2.7a, b)

and the kinematic boundary condition:

∂H

∂T
+

∂ψ

∂X
= 0. (2.8)

Upper- and lower-case letters denote quantities defined in the gas phase and the film,
respectively.

In the x-momentum inside the film we substitute the normal-force balance (cf.
(2.7b)) for the liquid pressure. Thus, the governing equations in the film are as
follows:

X-momentum:

M

(
∂u

∂T
+ u

∂u

∂X
+

y − 1

H

∂u

∂y

∂ψ

∂X

)
= −∂P

∂X
+

1

We

∂3H

∂X3
− 1

Fr

∂H

∂X
+

1

H 2

∂2u

∂y
2
, (2.9)

where ψ is the stream function in the film with u =(1/H )(∂ψ/∂y).
y-momentum:

∂p

∂y
= 0, (2.10)

and the non-slip, non-penetration conditions on the surface of the flat plate:

y = 0 : u = ψ = 0. (2.11)

The following parameters determine the importance of inertia, surface tension
and gravitational forces, respectively, in the film motion: M=(µ/µw)2(ρw/ρ),
1/We = (µ/µw)2(δ4σ/ρu2

f Hf ), 1/Fr = ((ρw/ρ) − 1)(µ/µw)2(gHf /u2
f ).

In the special case where M → 0, the resulting equation that describes flow in the
liquid film does not include inertia terms and a simple derivation provides the spatio-
temporal evolution of the interface as a result of shear, pressure, surface tension and
gravity forces:

∂H

∂T
= − ∂

∂X

(
H 2

2

∂U

∂Y

∣∣∣∣
Y = 0

)
+

∂

∂X

(
H 3

3

∂P

∂X

)
− ∂

∂X

(
H 3

3We

∂3H

∂X3

)
+

∂

∂X

(
H 3

3

1

Fr

∂H

∂X

)
.

(2.12)

The above equation is used in place of (2.6)–(2.11) and pertains mostly to the
interaction of anti-icing fluids with an oncoming boundary layer of air, due to the
very large viscosity of the former.

In all cases we perturb the basic solution by introducing a disturbance at a location
x0 on the interface:

H (T = 0) = H0(T = 0) + HD, (2.13)

HD = ε exp[−W (εX)2] cos(kX), HD = ε exp[−W (εX)2] cos(ωT ), (2.14a, b)
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where HD denotes the imposed disturbance which can be either instantaneous or
periodic, ε corresponds to the magnitude of the disturbance, W defines its range
in the streamwise direction, and k and ω the wavenumber and frequency of the
disturbance. The variable k is set to zero in simulations for the Froude number far
from the critical regime, signifying an impulsive disturbance.

3. Stability analysis
3.1. Linear stability analysis

Linear stability analysis of the flow system under consideration has been performed
by Timoshin (1997) and Pelekasis & Tsamopoulos (2001), assuming a constant film-
flow rate and a constant rainfall rate, respectively, for the base flow. They introduced,
on the base flow, small perturbations of the form

H = H0 + εf1,1E, U = U0 + εU1,1(Y )E, P = εP1,1E,

Ψ =
∂U0

∂Y

Y
2

2
+ εΨ1,1(Y )E, A = εA1,1E,

⎫⎪⎬
⎪⎭ (3.1)

where ε � 1 is a measure of the amplitude of the disturbance and E = exp(i(kX−ωrT ))
represents the wavetrain, with k and ωr being the complex wavenumber and complex
frequency, respectively, which comprises the imposed disturbance. The eigenfrequency
of the air–film system is numerically obtained as a function of the wavenumber and
the problem parameters. Starting from asymptotic solutions in the limit of small
gas-to-film-viscosity ratio, the dominant T–S and interfacial waves are captured via
a continuation procedure in the parameter space for the two fluid systems of interest.
This process is repeated in the present study for the problem formulation shown in § 2,
which focuses on interfacial waves. In this fashion, both the air–water system and the
air–de-/anti-icing fluid system were shown to be unstable with respect to interfacial
disturbances. The rest of the parameters being held constant, the Froude number of
these fluid systems is such that they are both well within the superctitical region, i.e.
Fr >FrCr ; FrCr is defined as the value of Fr for which ωi =0, with ∂ωi/∂kr > 0.

In the special case where M → 0, film inertia is insignificant, the case of air–
de-/anti-icing fluid system, and upon demanding that shear rates evaluated on the
gas and liquid sides of the interface balance each other, an asymptotic result is
obtained for the stability of interfacial waves. In this fashion, Timoshin (1997) and
Pelekasis & Tsamopoulos (2001) have obtained the following dispersion relation for
interfacial waves:

ω =kH0

∂U0

∂Y ′

∣∣∣∣
Y ′=0

− iH 3
0 k4

3We
− i

k2

Fr

H 3
0

3
+

H 2
0

2

(
−∂U0

∂Y ′

∣∣∣∣
Y ′=0

)

×
Ai(z = 0)

(
ik

∂U0

∂Y ′

∣∣∣∣
Y ′=0

)2/3

k |k| − 2

3

(
ik

∂U0

∂Y ′

∣∣∣∣
Y ′=0

)
H0k |k| Ai ′(z = 0)

|k|
(

ik
∂U0

∂Y ′

∣∣∣∣
Y ′=0

)1/3 ∫ 0

∞
Ai dz + Ai ′(z = 0)

(
∂U0

∂Y ′

∣∣∣∣
Y ′=0

)2
, (3.2)

where Ai and Ai ′ denote the airy function and its first derivative, respectively, and
z = (ky)1/3; Y ′ = y ′/LRe−1/2. It can be easily shown that the numerical and asymptotic
results agree very well when M becomes vanishingly small; otherwise numerical
solution is necessary.

Pelekasis & Tsamopoulos (2001), in their investigation of the above fluid systems,
also identified the convective versus absolute nature of interfacial and T–S instabilities,
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based on the properties of the dispersion relation in the complex plane (k, ω). It can
be shown (Huerre & Monkewitz 1990) that upon application of a narrow pulse-like
disturbance, the long-time system response is dominated by a wavepacket that is
decaying along every ray X/T when it is stable or growing within a certain range
of rays X/T when it is unstable. In the latter situation the system is considered as
convectively or absolutely unstable depending on whether the ray X/T = 0 lies outside
or inside the unstable wavepacket, respectively. Within the unstable wavepacket,
unstable waves are dispersed and a certain complex wavenumber k∗ = k∗r + ik∗i is
dominant along specific spatiotemporal directions. The real group velocity, as is
calculated based on k∗, is equal to the velocity along the specific ray:

∂ωr

∂kr

(k∗) =
X

T
= CG, (3.3)

while the growth rate along this ray is equal to σ = ωi(k∗) − (X/T )k∗i . The maximum
growth rate within the wavepacket is recovered for the case with k∗,i =0 (temporal
analysis). The wavenumber kmax for which ∂ωi/∂k|k = kmax

=0 provides the wavelength
of the wave with maximum growth rate, ωi,max =ωi(kmax ). Clearly, when ωi,max > 0 the
flow is linearly unstable, while if ωi,max < 0 the flow is characterized as linearly stable.
In this fashion Pelekasis & Tsamopoulos (2001) were able to identify the T–S waves as
convectively unstable and the interfacial waves as convectively or absolutely unstable
depending on the Froude number. In particular, as the Froude number increases the
nature of instability of interfacial waves was seen to shift from convective to absolute.

Evaluation of the group velocity of the different waves comprising the unstable
wavepacket can be performed by two different approaches (Brevdo et al. 1999). The
pinching method (Huerre & Monkewitz 1990; Brevdo et al. 1999), also known as
the collision method, can be used along any ray X/T in order to determine the
wavenumber k and the transformed frequency ωV = ω − kVG for which dωV /dk =0.
The transformed dispersion relation DV (ωV , k; VG) = 0 is used and the two branches
k± = k±(ωV ; VG) are calculated as a function of ωV r until, for some ωV i , the two
branches collide at a certain value of k0; the ± sign denotes branches stemming
from the positive/negative semi-plane of the k complex plane. Then, ω0 = ωV 0 + k0VG

and k0 denote the frequency and wavelength of the specific ray X/T whose group
velocity is

VGR =
X

T
=

∂ωr

∂kr

with
∂ωi

∂kr

∣∣∣∣
k=kr+iki

= 0. (3.4)

Starting from the wavepacket with maximum amplification the calculation proceeds
until two limiting group velocities are obtained, namely the one corresponding to the
right edge of the wavepacket, VGR , pertaining to the fastest moving waves, and the
one corresponding to the left edge, VGL, pertaining to the slowest among the unstable
waves.

Alternatively, the characteristics along the rays that include the unstable
wavepacket can be estimated with the saddle-point technique (Brevdo et al. 1999).
Specifying the imaginary part of the wavenumber to be different from zero,
k0i �=0, the wavenumber, frequency and group velocity of the waves comprising the
unstable wavepacket are obtained as ω0 = ω(k = k0r + ik0i), with ∂ωi/∂kr |k = k0r+ik0i

= 0,

VG = X/T = ∂ωr/∂kr |k = k0r+ik0i
. Again σi = ωi − VGRki ≈ 0 provide the left and right

edges of the unstable wavepacket. Even though the collision method is much more
time-consuming than the saddle-point method in many studies, the latter fails to
deliver reliable results, as was the case with the stability analysis of flow down
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an inclined plane (Brevdo et al. 1999). Similar technical difficulties were encountered
upon application of the saddle-point technique in the present study as well. Therefore,
all the results presented henceforth have been obtained with the pinching method.

3.2. Weakly nonlinear stability analysis

Linear stability analysis is unable to describe the evolution of even small disturbances
over long time intervals, within which nonlinear effects become important. In this
time scale, instabilities tend to become saturated provided that the parameter range
remains close to criticality in conjunction with the sub-/supercritical nature of
the bifurcating solution. In this fashion, fluid systems like the one examined here
can be investigated for steady travelling waveforms. The proper framework for
studying interfacial wave phenomena is provided by the multiple-time-scale method
(Benjamin 1961; Stewartson & Stuart 1971; Lin 1974; Bender & Orszag 1978) that
leads to the nonlinear Schrödinger equation describing the amplitude modulation
of the emerging wave. In its more general form, the one accounting for long-time
growth of the unstable mode, the latter equation assumes the form of the nonlinear
complex Ginzburg–Landau equation (Saarlos & Hohenberg 1992). It also contains
the nonlinear contribution to growth and saturation of the unstable wave, as a result
of mode interaction.

In this section the weakly nonlinear behaviour of a linearly unstable wave is
examined in the limit M → 0. Using appropriate scales in time and space we investigate
the effect of nonlinear interaction on the evolution of the emerging wave. It was shown
by Benjamin (1961) for two-dimensional linear dispersive waves down an inclined plate
and Stewartson & Stuart (1971) for plane Poiseuille flow that unstable wavepackets
are dispersed in a time of order ω−1

i and occupy a characteristic length of order

ω
−1/2
i , where ωi denotes the maximum growth rate among the unstable waves. Such a

behaviour is valid for a wide range of wave phenomena, including the case of capillary
waves on films examined here. If we concentrate on waves for which the maximum
growth rate is very close to the linear neutral curve, ωi → 0, the characteristic time of
order ω−1

i is quite large and consequently nonlinear effects should be accounted for.
Similarly, near the edges of the unstable wavepacket for the case of de-/anti-icing
fluids whose parameter range is far from criticality, the amplitudes remain small and
the nonlinear modulation of the carrier wave can be characterized as weak. Thus, we
introduce on the interface a small localized disturbance of the form

HD = ε[D(εX)eikx + D∗(εX)e−ikX], D(εX) = d(εX; τ = 0), d ≡ f1,1, (3.5)

which is characterized by a small amplitude ε; the asterisk in superscript denotes
complex conjugation. Equation (2.14a) provides an example of an acceptable form
of disturbance function D(εX). When ωi =O(ε2) the effect of nonlinearity can be
observed over a period of time of order O(ε−2) and for a distance of order O(ε). In
order to properly account for these effects the following scalings are introduced:

ξ = X − CpT , ζ = ε(X − CGT ), τ = ε2T , ζ1 = ε2(X − CGT ), (3.6)

where Cp and CG denote the phase and group velocities, respectively, of the
wave E as predicted from linear theory. In this fashion the amplitude modulation,
f1,1 ≡ d , of the wave E =exp(i(kX − ωrT )) can be obtained near critical conditions,
ω =ω(k; Fr, We, H0, λ) = ωr + iωi , with ωi = O(ε), as it varies over the slow time
and space coordinates τ and ζ . The evolution equation is obtained as a solvability
condition for the O(ε3) problem and is known as the complex nonlinear Ginzburg–
Landau equation. This is the order to which nonlinear mode interaction produces the
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carrier wave E. Mode interactions producing E◦ Fourier modes are also accounted
for. Since there is no mean-flow perturbation to O(ε), mean-flow or long-wave
components are first obtained to O(ε2) due to self-interaction of the primary wave E
with its complex conjugate E∗ = exp(− i(kX −ωrT )). A short outline of the derivation
as well as implications of the above described interactions to the system dynamics
are presented and discussed in the following.

The stream function in the gas phase and the shape of the interface are expressed
as follows:

Ψ = λ
Y

2

2

+ Φ, H = H0 + f, (3.7a, b)

where λY
2
/2 and H0 are the base-flow results for the stream function and the location

of the interface. Consequently, the x -momentum reads as

∂4Φ

∂Y
4

=

(
λY +

∂Φ

∂Y

)
∂3Φ

∂X∂Y
2

− ∂Φ

∂X

∂3Φ

∂Y
3
, (3.8)

while the boundary conditions outside the viscous sublayer give

∂Φ

∂Y
(Y → ∞) = λ(A + f ), (3.9)

∂2Φ

∂Y
2
(Y → ∞) = 0. (3.10)

Finally, the governing equation in the film assumes the form

∂f

∂T
= − ∂

∂X

(
(H0 + f )2

2

(
λ +

∂2Φ

∂Y
2

))
+

∂

∂X

(
(H0 + f )3

3

∂P

∂X

)

− ∂

∂X

(
(H0 + f )3

3We

∂3f

∂X3

)
+

∂

∂X

(
(H0 + f )3

3

(ρw/ρ − 1)

Fr

∂f

∂X

)
, (3.11)

whereas on the gas–liquid interface we obtain

Y = 0 : Φ =
∂Φ

∂Y
= 0. (3.12)

Following the derivation of Djordjevic & Redekopp (1977) for two-dimensional
wavepackets of capillary–gravity waves, functions Φ and f as well as the pressure
and displacement thickness can be expanded as follows:

Φ = εΦ1(ξ, ζ, ζ1, Y , τ ) + ε2Φ2(ξ, ζ, ζ1, Y , τ ) + ε3Φ3(ξ, ζ, ζ1, Y , τ ) + O(ε4), (3.13)

f = εf1(ξ, ζ, ζ1, τ ) + ε2f2(ξ, ζ, ζ1, τ ) + ε3f3(ξ, ζ, ζ1, τ ) + O(ε4), (3.14)

P = εP1(ξ, ζ, ζ1, τ ) + ε2P2(ξ, ζ, ζ1, τ ) + ε3P3(ξ, ζ, ζ1, τ ) + O(ε4), (3.15)

A = εA1(ξ, ζ, ζ1, τ ) + ε2A2(ξ, ζ, ζ1, τ ) + ε3A3(ξ, ζ, ζ1, τ ) + O(ε4). (3.16)

Substituting the above expressions in the governing equations we obtain a series
of problems in ascending powers of ε. To leading order the linear-stability-analysis
formulation and the corresponding solution are recovered (see (A 1)–(A 9) in the
Appendix), involving only the fundamental harmonic, E = exp(ik(X − cpT )) = eikξ ,
and its complex conjugate E−1:

Φ1 = Φ1,1(ζ, τ, Y )E + c.c., f1 = f1,1(ζ, τ )E + c.c.,

A1 = A11(ζ, τ )E + c.c., P1 = P11(ζ, τ )E + c.c.

}
(3.17)
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Coefficients Φ11, A11 and P1 are obtained as linear functions of f11 = d while
substitution in (A 6), which is the linearized form of (2.12), recovers the dispersion
relation, i.e. (3.2).

To second order we are looking for a solution of the O(ε2) problem (see (A 10)–
(A 15)), which is of the form

Φ2 = Φ2,0(ξ, ζ, ζ1, Y , τ )E0 + Φ2,1(ξ, ζ, ζ1, Y , τ )E + Φ2,2(ξ, ζ, ζ1, Y , τ )E2 + c.c., (3.18)

f2 = f2,0(ξ, ζ, ζ1, τ )E0 + f2,1(ξ, ζ, ζ1, τ )E + f2,2(ξ, ζ, ζ1, τ )E2 + c.c., (3.19)

with the pressure, P2, and displacement thickness, A2, assuming similar expressions
with the position of the interface, f2. Clearly, the second-harmonic and mean-flow
components arise due to interaction of the fundamental harmonic with itself and its
complex conjugate, respectively.

Upon integration of the mean-flow component (see (A 16)–(A 18)) of the O(ε2)
problem and application of the boundary conditions it can be shown that

∂2Φ2,0

∂Y
2

= ik

∫ Y

∞

(
Φ1,−1

∂2Φ1,1

∂Y
2

− Φ1,1

∂2Φ1,−1

∂Y
2

)
ds. (3.20)

Thus, the mean-flow component of the solution is a result of the Reynolds stress
that manifests itself in the interaction between the fundamental component and its
conjugate. The effect of viscous Reynolds stresses near the interface was shown by
Craik (1966) to be essential for growth of interfacial waves in water–air systems and
was also shown to play a central role in another type of wave propagation, namely that
of the critical neutral mode in plane Poiseuille flow between parallel plates (Davey,
Hocking & Stewartson 1974). In the present problem it is essential for generating the
mean-flow component that exchanges energy with the unstable wavepacket until
it eventually dominates the flow. The mean-flow component of the interface is
indeterminate to this order and will be part of the solvability condition to O(ε3). The
fundamental component of the second-order solution consists of a homogeneous part
that is similar to the one obtained for the O(ε) case (see (A 7)–(A 9)) and a particular
solution that is analogous to ∂d/∂ζ . Upon substitution in the O(ε2) equation for the
interface (see (A 22)), a condition for the fundamental component of the interfacial
position is obtained. Terms stemming from the homogeneous solution reproduce the
dispersion relation (3.2) and consequently vanish, whereas terms containing the slow
spatial derivative, ∂d/∂ζ , of the modulation d of the interfacial position provide the
group velocity of the propagating wave.

To O(ε3) nonlinear mode interaction, |d|2d , enters the dynamics of the fundamental
harmonic E (see (A 27)–(A 31)), as can be gleaned from the solution for the
fundamental component of the interface shown in (A 31). Substituting in (A 30),
representing the fundamental component of (2.12) to O(ε3), we obtain a solvability
condition for the amplitude modulation of the interface d(τ, ζ ). It should be stressed
that linear terms involving coefficient e from the solution of the fundamental
component of the interface provided in (A 31) cancel out in this process since
they reproduce dispersion relation (3.2), whereas linear terms arising from (A 30)
and involving derivatives ∂d/∂ζ1 and ∂α/∂ζ also cancel out as they reproduce the
relationship for the group velocity. The remaining terms in (A 30) satisfy a partial
differential equation (PDE) of the form

∂d

∂τ
+ S1

∂2d

∂ζ 2
= S2d + S3d |d|2 + S4f20d (3.21)
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for the amplitude modulation d of the fundamental wave E. S2 = ±ω′
i/kr is positive or

negative when Fr is larger or smaller, respectively, than a critical value of Fr =FrCr

for which ωi = ω′
i = 0. In the present study ω′

i is set to ±dωi/dFr |Fr→FrCr
in order to

signify regions above and below criticality, so that ε2ω′
i ∼ O(1).

In the absence of fundamental and mean flow interaction, (3.21) assumes the well-
known form of Schrödinger’s equation that is used in order to describe the nonlinear
behaviour of interfacial waves for parameters close to the linear neutral curve or near
the outskirts of a wavepacket where growth rate is also very small. It also answers
important questions regarding the existence of travelling waves and fronts in its area
of validity (Saarlos & Hohenberg 1992).

When interaction between the fundamental wave and the mean flow is present
(3.21) alone is not enough to describe the dynamics since evaluation of f2,0 is also
required. The latter is obtained via (A 32) which, given the expressions for f1,1, f1,−1

and Φ2,0, assumes the form

(H0λ − cG)
∂f2,0

∂τ
= S5

∂ |d|2

∂ζ
. (3.22)

Equations (3.21) and (3.22) can be solved simultaneously in order to provide the
evolution of the amplitude modulation f1,1 = d of the fundamental harmonic along
with the mean-flow component f2,0. Clearly then, when the group velocity CG of the
fundamental wave E happens to coincide with the product between the dimensionless
film thickness and shear stress exerted by the gas stream on the film in the base-
flow configuration, H0λ, there is resonance between the two Fourier components
and consequently energy transfers towards long-wave formation. Upon inspection of
dispersion relation (3.2) of interfacial waves when M tends to zero, it can be shown
that the phase speed of long waves, recovered as k tends to zero, is Cp = ω/k =
H0 ∂U/∂Y ′(Y ′ = 0) = H0λ.

A similar result was obtained by Djordjevic & Redekopp (1977) for two-dimensional
capillary–gravity Stokes waves. They also arrived at a Davey–Stewartson-type set of
equations like (3.21) and (3.22) and stressed that the limit of small liquid depth is
more appropriate for resonance between the advancing wavepacket and the emerging
long waves. In the present study, as well as in the case of Stokes waves, growth
of the mean-flow component, eventually leading to long-wave formation, is initiated
by the self-interaction of the short waves, i.e. a Reynolds-stress type of interaction
arising to O(ε2). When resonance takes place the scaling used in the above analysis
is not relevant any more and rescaling is necessary to capture the system dynamics.
Djordjevic & Redekopp proceeded in this direction in order to eliminate the secular
terms. The rescaled set of equations was directly integrated in terms of elliptic
functions (Ma & Redekopp 1979), and the solution assumes the form of a solitary
wave with a phase jump:

d = K(C)1/2exp

[
i
C

2

(
x − C

2
T

)]
tanh[K(x − CT )], Φ0,ζ ′ = −2K2 sech2[K(x − CT )].

(3.23)

In the same study it was shown that the rescaled equations admit a uniform-
wavetrain solution which is always unstable to modulational sideband instabilities.
A connection between the uniform wavetrain and the solitary-wave solutions was
conjectured by Ma & Redekopp but was not verified. Simulations performed in
the context of the present study reveal that the emerging interfacial waves tend to
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form a uniform wavetrain that, however, never saturates fully. Rather, it becomes
unstable and eventually produces a phase-jump-type solitary-wave solution. Rescaling
in the manner of Djordjevic & Redekopp is not attempted herein, as we are mostly
interested in revealing the mechanism behind long-wave and soliton formation in our
simulations, and the fluid systems of interest, i.e. de-/anti-icing fluids or water with
air, are far from criticality in which case the above analysis is strictly valid only near
the edges of the unstable wavepacket. It is known (Craik 1985) that modulation of
long waves about k = ω = 0 leads to soliton formation via the Korteweq–de Vries
equation. In a recent study it was shown by Clamond & Germain (1999) that the
proper interaction between a Stokes wavepacket and a long wave, one that is able to
capture the shape modulation of the latter, is via a coupled cubic Schrödinger and
Korteweq–de Vries set of equations. In other words, it entails interaction between
a Stokes wavepacket and a solitary wave. The latter issue was first addressed by
Ma & Redekopp (1979) by obtaining the next order correction to (3.41) and pointing
out the connection with Korteweq–de Vries theory for long waves and the nonlinear
Schrödinger theory for short waves. As was pointed out in §1, a similar soliton–
wavepacket interaction was identified as the dominant mechanism behind spike
formation in the evolution of high-frequency T–S waves (Kachanov et al. 1993;
Li et al. 1998). Consequently, when short- to long-wave resonance is present, in
the manner relevant to the Stokes waves and interfacial waves arising in the present
study, it can be argued based on the above that solitary-wave formation will eventually
prevail. In the following it will be shown, by careful interpretation of the results of
numerical simulations, that short- to long-wave resonance, in the manner described
above, and soliton formation can explain the wave patterns obtained in the numerical
results presented in I.

4. Dynamic simulations and interpretation of results
In this section we present results of numerical simulations for the case of interfacial

wave growth, including film inertia when necessary. The study focuses on the cases
of a water film or a film of de-/anti-icing fluid being dragged by a boundary layer
of air, which sets the viscosity ratio µ/µw to relatively low values and validates the
assumption of quasi-steady state in the gas phase. A detailed outline of the numerical
methodology is provided in I. Properties for the de-/anti-icing fluid–air system are
obtained from Ozgen et al. (2002), µ/µw = 1.67 × 10−6 and ρ/ρw = 0.001, while a flow
arrangement characterized by a test section of length L ≈ 30 cm and a free stream
velocity, U∞, ranging between 10 and 40 m s−1 is envisioned as it covers a wide range
of available experimental investigations. For the air–water system µ/µw and ρ/ρw

are set to 0.018 and 0.001, respectively. In this context, when L ≈ 30 cm and
U∞ ≈ 30 m s−1, Fr = 92699, 3.94 × 104 and We = 46, 59.88 for the cases of water and
deicing fluid, respectively. The film thickness necessary for the triple-deck approach
to be valid is Hf ∼ LRe−5/8 ≈ 0.06mm, i.e. Re ∼ 8 × 105, which is of the order of film
measurements on airfoils under simulated rainfall conditions; a moderate rainfall rate
of the order of 100 mm h−1 was assumed in obtaining the above estimates (Smyrnaios
et al. 2000; Pelekasis & Tsamopoulos 2001). The mesh characteristics in the bulk of
the simulations are �X = 0.2, �Y = 0.4, �T = 0.001 and Y ∞ = 10. Simulations with
�X = 0.1 and �Y = 0.2 were conducted not only to capture the effects related to film
inertia, which leads to smaller wavelengths and more intense recirculation patterns, but
also to validate the results via mesh refinement. Both cases near the critical neutral
curve as well as away from it are explored and an attempt is made to interpret
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Figure 1. (a) Fourier transform and (b–h) snap-shots of interfacial waves for the air–deicing
system in response to an impulsive disturbance; H0 = 2.07, ε = 0.001, x0 = 0.8, We = 60 and
Fr = 3.94 × 104.

the results in terms of spike formation and the resonance mechanism presented
in § 3.

4.1. Evolution of interfacial waves in the limit of negligible film inertia, M � 1

First, the possibility for formation of steady travelling waves is investigated. Previous
studies have either conjectured the existence of steady travelling waveforms in the
context of the condensed layer limit and for a thin film flow over external aerodynamic
surfaces (Rothmayer, Matheis & Timoshin 2002), or established a supercritical
bifurcation via weakly nonlinear analysis (Blennerhassett 1980) for interfacial waves
in a stratified channel flow. However, in the latter case, numerical evaluation of the
coefficients of the Schrödinger equation was ambiguous at large Reynolds numbers.
As will be seen in detail in the following, simulations conducted in the present study
did not indicate formation of steady waveforms with characteristics in the vicinity
of predictions by linear theory. Figure 1 illustrates the evolution of the interface of
a deicing fluid over a time interval that covers linear growth and nonlinear effects.
Table 1 contains the predictions of linear theory and the results of Fourier transform
on the spatiotemporal evolution of the wavepacket, for the frequency, wavelength and
group velocity of the most amplified wave of the wavepacket. There is a tendency
for front formation and propagation of a saturated wave with characteristics that are
close to the attributes of the propagating linear wavepacket. Figure 1(a) illustrates
the Fourier spectrum at a relatively early time when the wavelength predicted by
linear theory is dominant. However, as clearly illustrated in figure 1(g, h), this is
not materialized because it is eventually superseded by the onset of long waves and
spike formation and this behaviour is recovered for almost the entire parameter
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Linear theory Numerical results Linear theory Linear theory
(Fr = 3.94 × 104) (Fr = 3.94 × 104) (Fr = FrCr = 3.94 × 103) (Fr = 1.82 × 104)

Wavelength 3.47 3.53 15 3.6
Period 2.32 2.34 14 2.45
CG 2.2 2.26 1.4 2.05
CGL 0.4 0.4 0.73
CGR 2.75 2.7 3.7

Table 1. Attributes of the unstable wavepacket for interfacial waves of the air–deicing system
predicted analytically via (3.2) and computed numerically; x0 = 0.8, λ= 0.37, H0 = 2.076,
We = 60 and H0λ≈ 0.77. CG: group velocity of the most unstable wave of the wavepacket;
CGL: group velocity of the left wave of the unstable wavepacket; CGR: group velocity of the
right wave of the unstable wavepacket.
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Figure 2. (a) Fourier transform and (b–h) snap-shots of interfacial waves for the air–deicing
system in response to an impulsive disturbance; H0 = 2.07, ε = 0.01, x0 = 0.8, We = 60 and
Fr = 3.94 × 104.

range examined herein. Repeating the simulation with a larger amplitude of the
initial disturbance simply accelerates the onset of spike formation (figure 2), without
modifying the soliton-type wave pattern with maximum height that is, roughly,
twice the mean film thickness H0. Consequently, and in order to fully illustrate the
different dynamic phenomena associated with the evolution of interfacial waves, we
use relatively small values of the amplitude, ε � 0.5, of the initial disturbance in the
simulations to be presented in the following. It should be stressed that, as illustrated
in figures 1 and 2 as well as in all the simulations to be presented, long waves appear
from the left side of the advancing wavepacket since it is there that the resonance
criterion, H0λ= CG, is met.
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Upon inspection of figures 1 and 2 one notices the onset and growth of an additional
wavepacket from the left side of the computational domain (figures 1g, h and 2g, h).
The latter is numerically generated, and it possesses all the characteristics of the most
unstable wavepacket predicted by linear theory and arises because of truncating the
infinite domain in the longitudinal direction. As was discussed in I it amounts to
an infinitesimal disturbance imposed on the left edge of the computational domain,
the level of which is determined by the accuracy of double-precision arithmetic.
It, however, does not affect the evolution of the leading wavepacket as long as
their distance remains large. Interaction between the wavepacket advancing from
the left edge of the domain and the main disturbance may arise when, for large
amplitudes of the initial disturbance, waves travelling to the left of x0 reach the
advancing wavepacket before they decay significantly. Then different waveforms may
arise due to wave collision in the wake of the leading wavepacket, which, again, do
not influence its dynamics as long as they remain far enough, as is the case with
figures 1 and 2. This effect may also explain small differences in the evolution of
the second wavepacket, as is manifested in figures 1(g, h) and 2(g, h). It should also
be stressed that, as was pointed by Timoshin & Smith (2003), non-local interactions
of the type described above may lead to feedback instability and the appearance
of global structures depending on the attributes of the interacting waves. However,
such an extreme dynamic distortion of the flow arrangement was not observed in the
present study.

It is known from linear theory (Pelekasis & Tsamopoulos 2001) that Fr controls
the onset of instability for interfacial waves. Since, for the parameter range of de-/
anti-icing films in air, interfacial waves are well away from criticality, i.e. ωi > 0, it
will be useful to examine the behaviour of this system for Fr = FrCr , with the rest
of the parameters remaining the same as for the case of a deicing fluid, via weakly
nonlinear analysis in which case the approach outlined in § 3 is strictly valid. Once
the characteristics of travelling monochromatic waves near criticality are known then
such waves can be incorporated in the simulations in the form of an initial disturbance
to be followed numerically until saturation. This process can then be repeated until
the actual Fr for the de-/anti-icing fluid–air system is reached.

Gradually varying Fr in this fashion, linear analysis provides FrCr ∼ 3940, with
ωi,max ∼ 0.019. Figure 3(a–f ) portrays the dispersion relation for this situation.
Performing weakly nonlinear analysis around the linear wave E =exp(i(kX − ωT )) at
critical conditions gives S3 ≈ 49.5 − 39i, which amounts to a subcritical bifurcation
(Saarlos & Hohenberg 1992); S1 = 100.76 − 27.8i while S2 is obtained in the manner
explained in the § 3.2. Consequently, if travelling waves are to be observed at all
they should be expected in the subcritical region, i.e. Fr close to but smaller than
FrCr of the parameter space. By carrying out numerical simulations for Fr slightly
below the critical value, we obtain interfacial waves exhibiting a wavepacket that
propagates and possesses the characteristics predicted by linear theory, while its
amplitude decreases slowly but steadily. On the other hand, above the critical Fr a
wavepacket is not formed. Rather the disturbance tends to saturate near the peaks of
the waves, whereas it develops regions of increasing curvature around the troughs. At
the same time waves of progressively smaller wavelength appear that also gradually
grow and occupy an increasingly large part of the interface. This is an indication of
sideband instability and is also manifested in the Fourier spectrum that is distinctly
broadband when extended to large wavenumbers. Beyond a certain point in time the
simulations cannot proceed due to loss of accuracy around the troughs, indicating
the tendency for cusp formation.
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Figure 3. Dispersion relation, ωr =ωr (k) and ωi = ωi(k), corresponding to interfacial waves
for the air–deicing system, when (a, d ) Fr = 3.94 × 103, (b, e) Fr = 1.82 × 104 and (c, f )
Fr = 3.94 × 104.

Thus, the findings of weakly nonlinear analysis and the results of numerical
simulations concur with the existence of a subcritical bifurcation at FrCr . In fact,
progressively larger values of amplitude ε were used with Fr < FrCr , without ever
producing a saturated wave. The propagating wavepacket that appeared as a result
of the initial disturbance always tended to die out eventually. It seems that the level
of shape perturbation that is required for subcritical destabilization to take place, i.e.
for a steady travelling wave to appear in the parameter range for which the base flow
is stable, is very large. Similarly, further increasing Fr provided a system response
exhibiting very large curvature around the troughs of the wave. The details of the
singularity that is about to form in this region of the interface were not pursued
herein. Given the fact that this range of Fr does not correspond to either of the two
fluid systems that we investigated in this study we did not pursue this search further,
relegating it to a future study.

As Fr is increased further there is a threshold value, roughly Fr = 1.8 × 104, beyond
which the response of the interface to an impulsive initial disturbance is of the
type shown in figures 1 and 2. This is the minimum value of Fr for which the
pattern of saturated spike formation is obtained. As illustrated by the dispersion
relation relevant to this parameter range (figure 3b, e), there is a band of unstable
wavenumbers, with k = 3.6 being the most unstable one. During the phase of linear
growth the latter wavenumber dominates the spatial Fourier spectrum. Estimating
the group velocities corresponding to the left (CGL = 0.73) and right (CGR = 3.7)
travelling waves of the wavepacket as well as the group velocity (CG = 2.05) of the
most unstable wave (table 1), it is seen that the phase velocity of long interfacial
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Figure 4. (a) Fourier transform and (b–h) snap-shots of interfacial waves for the air–deicing
system in response to an impulsive disturbance; H0 = 2.07, ε =0.4, x0 = 0.8, We = 60 and
Fr = 3.94 × 104.

waves, Cp = H0λ=0.77 based on the limit of (3.12) as k tends to zero, marginally falls
inside the interval (CGL, CGR). Beyond the threshold value Fr =1.8 × 104, including
the value of Fr = 3.94 × 104 corresponding to the anti-icing fluid under examination,
the response of the interface assumes the form of a travelling wavepacket that also
spreads out from its centre of most intense growth (see also figures 1 and 2). Table 1
provides the relevant group velocities for this case, which clearly contain the phase
speed of long waves H0λ. Consequently, there is a possibility for short- to long-wave
resonance and this is observed in the simulations. Indeed, the wavepacket almost
saturates to form steady travelling waves especially for small amplitudes (figures 1
and 2); however, it loses stability to waves of much larger wavelength. In fact, as
it turns out, CGL <H0λ<CG, and the wavepacket always starts disintegrating on its
left side, forming long waves that evolve and modulate until they reach a saturation
height that is almost twice the mean film height H0. In this process their speed keeps
increasing while their shape downstream and upstream of the spike exhibits capillary
waves and a depression region, respectively, in a manner typically observed in soliton
formation. Behind the leading spike other spikes tend to form that eventually reach
the same maximum height. This pattern persists for the entire range of amplitudes
examined, 0.001 � ε � 0.5; figures 4 and 5 correspond to ε =0.4 and 0.5. In fact, when
ε =0.4 and 0.5 the dynamics evolve faster and a second peak is also captured with a
similar capillary-wave formation ahead of it as for the leading peak (figures 4 and 5).
Once the leading wave attains the state dominated by long-wave formation it performs
oscillations around its maximum height while travelling at an almost constant speed
(figure 6). This pattern conforms well with the phase-jump solution obtained by
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Figure 5. (a) Fourier transform and (b–h) snap-shots of interfacial waves for the air–deicing
system in response to an impulsive disturbance; H0 = 2.07, ε = 0.5, x0 = 0.8, We = 60 and
Fr = 3.94 × 104.

Ma & Redekopp for their analysis describing short- to long-wave resonance of
Stokes capillary–gravity waves (see also (3.23)).

Figure 6(a–h) illustrates the time evolution of the height and location of the major
spike in the interfacial shape corresponding to figures 1, 2, 4 and 5. The capillary-wave
formation is not identical in the final panels shown in the above figures, probably
due to the oscillatory nature of the emerging phase-jump waveform and also due
to the different time scales required to obtain such a wave depending on the initial
amplitude. The heavy computational cost did not allow the simulations to proceed to
significantly longer times than those depicted in figures 1, 2, 4 and 5. Nevertheless, the
evolution of leading wave, as illustrated in figure 6, is quite indicative of the system
dynamics and possesses very similar features. As can be gleaned from figure 6(a, b) the
maximum film height after an initial transient exhibits a region of exponential growth
followed by a region of almost constant height, indicating a tendency for saturation.
The latter state, however, becomes unstable, leading to an oscillatory state of increased
average height and a characteristic frequency that was seen to remain more or less the
same as ε increased. It should be noted that the tendency for a steady waveform to
appear that will eventually become unstable was mentioned in the analysis by Ma &
Redekopp. The simulations performed here, especially for small amplitudes, indicate
the path towards soliton formation via the destabilization of steady travelling waves,
a pattern that was conjectured by the above authors. As ε increases (figure 6c, d ), the
region of wave saturation is bypassed and the system dynamics arrive at the state
dominated by long waves immediately after the region of exponential growth. The
final oscillatory state seems to be the same as far as the average height and frequency
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Figure 6. Evolution of the height and location of the leading peaks of interfacial waves for
the air–deicing system when (a, e) ε = 0.001, (b, f ) ε = 0.01, (c, g) ε = 0.4 and (d, h) ε =0.5;
H0 = 2.07, x0 = 0.8, We = 60 and Fr = 3.94 × 104.

of oscillations are concerned. The interval of validity of linear theory decreases but
still exists, as can be gleaned from the Fourier spectrum registered early on in the
simulation (figures 4a and 5a) and the group velocity of the unstable wave (table 1
and figure 6e–h). The attributes of the wavepacket deviate from linearity due to the
relatively small time interval from inception of the disturbance, but the pattern of
wavepacket formation and translation, as predicted by linear theory, is present as
well as its decomposition due to short- to long-wave resonance (figures 4 and 5). The
initial group velocity as well as the wave speed of the final solitary wave can also
be surmised by the initial and final slopes of the curves depicting the location of the
leading spike versus time in figure 6(e–h). They follow a similar pattern with quite
similar slopes during the time intervals of exponential growth and final solitary-wave
transport. The former value can be cross-checked with the predictions of linear theory
as it corresponds to the group velocity of the most unstable wave, CG.

Decreasing Fr and We, which amounts to decreasing the film flow rate and
increasing the interfacial surface tension, bears a stabilizing effect on interfacial waves,
especially short ones. This can also be deduced by examining dispersion relation (3.2)
and noting the O(k2) and O(k4) dependence of gravitational and capillary effects,
respectively. The tendency for shorter waves to appear with increasing We is evident
in the linear attributes of the emerging unstable wave (see also dispersion relation
(3.2)), and this is also registered in the Fourier spectrum of the interface during
the early stages of wave growth. Figures 4(a), 7(f ) and 8(f ) provide the dominant
wavenumber at a time instant in that time interval, in agreement with the findings
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Linear theory Numerical results Linear theory Numerical results
(We = 120) (We = 120) (We = 30) (We = 30)

Wavelength 2.65 2.54 4.35 4.3
Period 1.5 1.45 2.8 2.75
CG 2.35 2.4 2 2.1
CGL 0.3 0.3 0.45 0.5
CGR 4.7 4.6 3.8 3.7

Table 2. Attributes of the unstable wavepacket for interfacial waves of the air–deicing
system predicted analytically via (3.2) and computed numerically; x0 = 0.8, H0 = 2.076 and
Fr = 3.94 × 104. CG, CGL and CGR are defined in table 1.

1.5
2.0
2.5
3.0
3.5

T = 1.5

T = 7

T = 11

1.5

2.0

2.5

3.0 T = 1

1 2 3 4 5 6 70

0.004

0.008

0.012
T = 1.5

0 20 40 60 80–20–40–60

T = 4

0 2 4 6 8 10 12
2.5
3.0
3.5
4.0
4.5
5.0

0

10
20
30
40
50

–40 –30 –20 –10 0 10 20 30 40 50 60

 X

k/2π

T
2 4 6 8 10 12

T

1.0

2.0

3.0

4.0

1.0

2.0

3.0

4.0

1.0

2.0

3.0

4.0

h

h

h

A
m

pl
it

ud
e

h m
ax

x m
ax

(b)

(a)

(f)

(g)

(e)

(d)

(c)

(h)

Figure 7. (a–e) Snap-shots, (f ) Fourier transform and evolution of the (g) height and (h)
location of the leading peaks of interfacial waves for the air–deicing system in response to an
impulsive disturbance; H0 = 2.07, ε = 0.5, x0 = 0.8, We = 120 and Fr = 3.94 × 104.

of linear theory. The relevant group velocities are also evaluated (table 2), and it
is seen that the criterion H0λ ∈ (CGL, CGR) is satisfied. Consequently, the pattern
of resonance and long-wave formation is present while its onset is decelerated with
increasing surface tension (figure 8). In addition, the waveform that appears due to
the modulation of the long wave is affected by surface tension in a manner typical
of soliton formation subject to varying We; see also the results reported by Meza &
Balakotaiah (2008) for soliton formation in the context of falling films. Indeed, the
wavelength of capillary waves ahead of the leading spike tends to decrease as We
increases due to mitigation of the stabilizing effect of surface tension that allows for
shorter waves to arise. The final panels of figures 5, 7 and 8 verify this tendency with
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increasing We in the context of the present study. The final oscillatory state is also
present in figures 7(g) and 8(g), following the initial growth of the maximum height,
and is characterized by an increased period with increasing surface tension.

The above pattern persisted as long as parameter M and product H0λ remained
below a certain threshold value. Parameter M sets the relative strength of viscous and
inertia forces in the film whereas the product H0λ is a measure of the film velocity
prescribed by the base flow. They both establish a parameter range below which an
inertialess film flow can be assumed.

4.2. Evolution of interfacial waves when film inertia is present

In this section, the approach outlined above is adopted in order to interpret the
findings of simulations for dynamic interaction of the air–water system. Figure 9
provides the dispersion relation for air–film systems in terms of ωr and ωi versus kr

graphs, when film inertia is important. Numerical analysis of the dispersion relation
via the pinching method (Pelekasis & Tsamoopoulos 2001) reveals that the air–water
system is absolutely unstable, i.e. CGL is negative but still close to zero when compared
against the group velocity of the most unstable wave (see also table 3). However,
as Fr decreases the instability becomes convective, i.e. CGL > 0, while criticality is
reached for the Fr value of 6170, roughly. As already stressed in the previous sections
the analysis carried out in § 3 is not valid for the case of water for which film inertia
is important, and therefore (2.12) that describes the evolution of film thickness is
not valid. However, it will be seen in the following that the mechanism of long- to
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Linear theory Numerical results Linear theory Linear theory
(Fr = 9.2 × 104) (Fr = 9.2 × 104) (Fr = FrCr = 6172) (Fr = 9259)

Wavelength 3.85 3.9 5.2 4.1
Period 3.1 3 3.6 2.7
CG 1.5 1.45 1.8 2

Table 3. Attributes of the unstable wavepacket for interfacial waves of the air–water system
predicted via linear stability analysis by Pelekasis & Tsamopoulos (2001) and computed
numerically; x0 = 1.5, λ= 0.27, H0 = 3.326, We = 46 and H0λ≈ 0.9. CG is defined in table 1.
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H0 = 3.326, x0 = 1.5 and We = 46.

short-wave resonance leading to soliton formation is quite useful in providing insight
on the system dynamics.

Numerical tests around the region of critical Fr, with the rest of the parameters
pertaining to the air–water system, revealed the same pattern of subcritical bifurcation
previously discussed for the de-/anti-icing fluids. As Fr gradually increases this
behaviour is recovered until a threshold value is reached, Fr ≈ 9260, beyond which a
wavepacket is formed that grows and translates with the characteristics of the linear
wave. The instability is convectively unstable for 9260 � Fr < 37 037 and becomes
absolutely unstable in the parameter range that is relevant to the air–water system,
Fr ∼ 92 000. Figures 10–12 illustrate the dynamic response of the air–water system
subject to an increasingly large amplitude of the initial impulsive disturbance. The
response is distinctly different from that in the neighbourhood of critical Fr . In all
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Figure 12. (a) Fourier transform and (b–h) snap-shots of interfacial waves for the air–water
system in response to an impulsive disturbance; H0 = 3.326, ε = 0.4, x0 = 1.5, We = 46 and
Fr = 9.2 × 104.

cases a wavepacket consisting of the most unstable wave, kr = 1.6, is formed, grows
and translates in the manner predicted by linear theory (see also table 3). The group
velocity of its left edge is close to zero but since the growth rate, ω0i =0.09, of
the absolutely unstable wave, kr = 1.4, is very small compared to that of the most
unstable wave, ω0i = 0.78, the response is dominated by the latter. As time elapses
the evolution of the wavepacket deviates from linearity exhibiting spikes, while the
spectrum is progressively enriched in the long-wave regime. The time over which this
behaviour is evident decreases with increasing amplitude. Upon examination of the
dispersion relation in the long-wave regime, k → 0, the phase speed of long waves
is ω/k ≈ H0λ, which assumes the value H0λ≈ 0.9 when x0 = 1.5. This value is clearly
within the interval of group velocities of the translating wavepacket. In fact, it is
smaller than the group velocity of the most unstable wave, CG ≈ 1.5 for kr = 1.6
from table 3, which probably explains why long waves first appear on the left side
of the packet, as it is on this side that the short- to long-wave resonance criterion,
H0λ= CG, is met. Once long waves appear the wavepacket is dominated by a single
spike that keeps growing. A saturation height such as the one observed for anti-icing
fluids was not observed for simulations with the water–air system, as long as the
product H0λ remained above a certain threshold value. Based on the simulations that
were performed when the location of the disturbance is at x0 = 0.8, in which case
λ≈ 0.3 from the Blasius solution, it was seen that when the mean film thickness H0

is reduced from 1.4 to 0.7 the final wave pattern is changed from the one exhibiting
a constantly growing spike to the saturated oscillatory spike obtained with anti-icing
fluids. In other words the role of film inertia is heavily dependent on the characteristic
interfacial velocity H0λ provided by the base flow.
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Figure 13. Evolution of the height and location of the leading peaks of interfacial waves
for the air–water system when (a, d ) ε = 0.0001, (b, e) ε =0.1 and (c, f ) ε = 0.4; H0 = 3.326,
x = 1.5, We = 46 and Fr = 9.2 × 104.

Figure 13 illustrates the time evolution of the maximum height of the wavepacket as
well as its position in space. They both exhibit a similar behaviour with de-/anti-icing
fluids. More specifically, the maximum height is characterized by an initial transient
followed by exponential growth, pertaining to the linear growth of the packet. This
process is arrested by the onset of long waves, leading to spike formation and further
growth. The speed of translation of the maximum can be inferred by the evolution
of its location, which exhibits two regions, namely the one corresponding to linear
growth, during which the speed is determined by that of the most unstable wave of
the packet, and the one corresponding to spike formation and growth. The latter is
larger and keeps increasing, and this conforms with the pattern of spike growth and
soliton formation proposed for the case of anti-icing fluids.

At this point it should be stressed that simulations cannot proceed beyond a certain
height of the growing spike, due to excessive growth of the displacement thickness
that compromises the validity of the triple-deck theory. It is, however, conjectured
here that what is captured by the simulations is indeed the root to solitary-wave
formation, in a manner similar to the case of anti-icing fluids. However, due to film
inertia, the saturation height for the case of water is expected to be much larger, thus
rendering its accurate evaluation by the simulations very difficult, if not impossible,
since the triple-deck structure may be destroyed long before soliton formation reaches
saturation. Cusp formation as a result of a finite-time singularity was anticipated in
studies of dynamic boundary-layer interaction with surface distortions (Brotherton-
Ratcliffe & Smith 1987; Smith 1988), and we believe that this is reflected in the
numerical results presented here in the form of spike formation, leading to finite-time
singularities and cusps in the shape of the interface of water films. As was seen in
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Linear theory Numerical results Linear theory Numerical results
(We = 92) (We = 92) (We = 23) (We = 23)

Wavelength 2.95 3.1 5.2 5.2
Period 2.5 2.35 4.25 4.2
CG 1.5 1.45 1.55 1.5

Table 4. Attributes of the unstable wavepacket for interfacial waves of the air–water system
predicted via linear stability analysis by Pelekasis & Tsamopoulos (2001) and computed
numerically; x0 = 1.5, H0 = 3.326 and Fr = 9.2 × 104. CG is defined in table 1.

the previous subsection, in the case of de-/anti-icing fluids film viscosity prevents
the finite-time singularity from arising and produces oscillations around a saturation
height that is roughly twice the base flow height H0.

Close examination of the final panels in figures 10–12 further corroborates this
interpretation. Indeed the shape of the interface is characterized by a spike that is
preceded by a number of capillary waves and followed by a depression of the interface.
In particular, when ε = 0.1 and 0.4, in which case the dynamics of the system evolve
faster, the final panels in figures 11 and 12 indicate the tendency for the same solitary
wave pattern to develop within a time interval that decreases as the amplitude of
initial disturbance increases. Changing the We number while keeping the rest of the
parameters the same as in figure 12 leads to a similar wave pattern consisting of the
linear wavepacket growth and translation, the linear characteristics of the emerging
wavepacket can be gleaned from Table 4, followed by spike formation and a solitary-
wave-type arrangement (figures 14 and 15). The wavelength of the preceding capillary
waves tends to decrease as the We number increases, or equivalently, as surface
tension decreases and, consequently, its stabilizing effect on short waves attenuates.
This is also typical behaviour of solitary-wave formation in the presence of capillary
effects. The effect of film inertia has been recently studied for the case of a falling
film by Meza & Balakotaiah (2008), who showed that a saturation height as large as
10-fold of the mean initial height can be achieved, when film inertia dominates over
viscous and capillary effects.

5. Conclusions
Based on the above we can conclude on the mechanism that is responsible for the

wave patterns that arise on a film–air interface in our triple-deck simulations, when
the boundary layer drags the thin film. The research focuses on viscous films in which
case the T–S waves that grow in the bulk of the boundary layer travel much faster
than waves on the film–air interface, thus allowing for treatment of the flow in the
gas phase as quasi-steady. For this flow arrangement and considering realistic fluids,
such as water or de-/anti-icing fluids, the base flow, consisting of a shear flow in the
film driven by a Blasius boundary layer in the gas phase, loses stability to interfacial
waves. The latter translate and grow in the form of a wavepacket that is predicted
by linear theory. The wavepacket never quite saturates. Rather it disintegrates due to
energy being channelled to long waves that arise as a result of a short- to long-wave
resonance. The latter is of the form first proposed by Djordjevic & Redekopp for
Stokes capillary–gravity water waves, and occurs whenever the phase speed of long
waves in the limit as k → 0, i.e. H0λ, falls within the interval determined by the left
and right travelling waves of the advancing wavepacket, i.e. CGL <H0λ<CGR . Weakly
nonlinear analysis via the multiple-time-scale technique, which allows for interaction
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Figure 14. (a–e) Snap-shots, (f ) Fourier transform and evolution of the (g) height and (h)
location of the leading peaks of interfacial waves for the air–water system in response to an
impulsive disturbance; H0 = 3.326, ε = 0.4, x0 = 1.5, We = 92 and Fr = 9.2 × 104.

between the unstable interfacial wave and the mean-flow component, i.e. long waves,
provides a Davey–Stewartson-type set of PDEs, describing the dynamics of the system
that verifies the possibility for the above type of resonance for the problem under
consideration. Numerical simulations conducted over a wide parameter range concur
with this picture and also capture the final wave pattern that consists of solitons whose
spikes travel faster than the original wavepacket while at the same time oscillating
around a maximum value. The waveforms that were calculated resemble the phase-
jump solution obtained by Ma & Redekopp for the set of equations describing short-
to long-wave resonant interaction for Stokes capillary–gravity waves. It should be
stressed that in the latter flow arrangement the short- to long-wave resonance occurs
and becomes dominant as the liquid depth becomes much smaller than the wavelength
of gravity waves. This pattern was fully captured for the case of de-/anti-icing fluids
for which the weakly nonlinear analysis is valid. For the case of water–air system
only the preliminary stages were captured, up to the deconstruction of the travelling
wavepacket, leading to spike and soliton formation, without ever reaching a saturated
spike height. This is due to the increased film inertia of water that leads to a much
larger height of the emerging spike, to the point that the triple-deck formulation
loses validity due to massive separation of the boundary layer. The collapse of the
triple-deck flow arrangement in water films is manifested in the form of a finite-
time singularity and cusp formation in the pressure gradient (see also the relevant
graphs reported in I), in the manner described by Smith (1988) and Brotherton-
Ratcliffe & Smith (1987) for flows over distorted boundaries via the interactive
boundary-layer separation. In the case of de-/anti-icing fluids, film viscosity leads
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Figure 15. (a–e) Snap-shots, (f ) Fourier transform and evolution of the (g) height and (h)
location of the leading peaks of interfacial waves for the air–water system in response to an
impulsive disturbance; H0 = 3.326, ε = 0.4, x0 = 1.5, We = 23 and Fr = 9.2 × 104.

to solitary waves with maximum thickness that oscillates around a saturation height
of 2H0.

The wave pattern obtained in the case of air–water systems is probably the wave
identified by Craik (1966) as slow wave, whose speed was of the same order of
magnitude as the velocity of the interface while its thickness exhibited steep spikes.
The product H0λ is a measure of the interfacial speed and signifies the onset of
short- to long-wave resonance with waves whose group velocity CG is equal to the
phase speed of long waves, H0λ. Craik, in his analysis, emphasized the importance
of Reynolds stresses in the onset of unstable interfacial waves. Weakly nonlinear
analysis performed herein reveals that Reynolds stresses are essential for growth of
long waves to occur to O(ε2), due to self-interaction of short waves, and destabilize
the translating wavepacket.

A separation bubble is also present in the case of de-/anti-icing fluids without,
however, reaching quite the extent of water spikes (see relevant graphs presented in I).
This aspect of the solution may play a central role in the performance deterioration of
airfoils under severe rainfall conditions. What remains to be seen in order to establish
this mechanism is whether the above pattern will persist under three-dimensional
disturbances. Clearly, formation of rivulets will take place, but the two-dimensional
structure described above is expected to play a significant role in the onset of three-
dimensional disturbances, given the speed of the emerging waves and the fact that
solitons tend to be stable once they are formed, at many occasions. This dynamic
pattern is supported by previous studies on the nonlinear stability of high-frequency
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T–S waves. Such waves also emerge at supercritical conditions and are initially
described by a generalized Schrodinger equation with a cubic nonlinearity (Smith
1986). Subsequently, their amplitude growth is controlled by the integral–differential
Benjamin–Ono equation (Smith & Burggraf 1985), which was later seen (Li et al.
1998) to involve interaction between solitary waves and the originally emerging
wavepacket, leading to finite-time singularities and cusp formation. In the same
context, Kachanov et al. (1993) showed the connection between the Benjamin–Ono
equation and solitary-wave formation and stressed the issue of spike formation and
transition in boundary layers. They also verified the persistence of this process
in the presence of three-dimensional disturbances, against available experimental
observations.

Nevertheless, in the context of the present study, this is an issue that needs to be
addressed in detail. Perhaps, derivation of a three-dimensional Davey–Stewartson-
type of coupled PDEs via the three-dimensional triple-deck (Smith & Stewart 1987)
description of the flow system under consideration is warranted for a more realistic
representation. Incorporation of a forcing term will also be useful in order to model
flow-control practices. Simulations conducted in the present study in the context of
two-dimensional disturbances indicate that adding surfactants in the film may have a
favourable effect, in the sense that they delay the onset of spike formation, as can be
gleaned upon comparing figures 5, 7 and 8 for a de-icing film and figures 12, 14 and
15 for a water film.

M.V. wishes to acknowledge the scholarships ‘PENED’ of the Greek Secretariat
of Research and ‘PYTHAGORAS’ of the Greek Ministry of Education for support
during this work.

Appendix A
To leading order the linear stability analysis formulation is recovered:

∂4Φ1

∂Y
4

= λY
∂3Φ1

∂ξ∂Y
2
, (A 1)

∂Φ1

∂Y
(Y → ∞) = λ(A1 + f1), (A 2)

∂2Φ1

∂Y 2
(Y → ∞) = 0, (A 3)

Y = 0 : Φ1 =
∂Φ1

∂Y
= 0, (A 4)

P1 =
1

π

∫ +∞

−∞

∂A1

∂s

ds

ξ − s
, (A 5)

Y = 0 : −Cp

∂f1

∂ξ
= −H 2

0

2

∂3Φ1

∂ξ∂Y
2

− H0λ
∂f1

∂ξ
+

H 3
0

3

∂2P1

∂ξ 2

+
H 3

0

3

(ρw/ρ − 1)

Fr

∂2f1

∂ξ 2
− H 3

0

3We

∂4f1

∂ξ 4
. (A 6)
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The solution of the above problem in terms of the transformed variable z =Y (iλk)1/3

reads

A1,1 =
d(ζ, ζ1, τ )λ2Ai ′(z = 0)

k(ikλ)1/3

∫ ∞

0

Ai(z) dz − λ2Ai ′(z = 0)

= −d(ζ, ζ1, τ )
3λ20.259

k(ikλ)1/3 + 3λ20.259
, (A 7)

P1,1 = kA1,1, (A 8)

Φ11 = d C(k)Φ(z) = d
λk

k(ikλ)1/3 + 3λ20.259

[
3

∫ z

∞
(zAi(s) − sAi(s)) ds + z − 3 × 0.259

]
.

(A 9)

In order to obtain the complex-conjugate solution we set z =Y (−ikλ)1/3. The problem
to order ε2 reads as

∂4Φ2

∂Y
4

= λY
∂3Φ2
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2

+
∂Φ1

∂Y

∂3Φ1
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∂ξ
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+ λY
∂3Φ1

∂ζ∂Y
2
, (A 10)

∂Φ2

∂Y
(Y → ∞) = λ(A2 + f2), (A 11)

∂2Φ2

∂Y 2
(Y → ∞) = 0, (A 12)

Y = 0: Φ2 =
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∂Y
= 0, (A 13)
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π
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, (A 14)
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H 2
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+ H0λ
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H 3

0
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∂4f2

∂ξ 4
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∂f1

∂ζ
= R1 + R2, (A 15)

where R1 represents linear terms involving derivatives with respect to slow space
coordinate ζ and R2 represents terms arising due to nonlinearity.

The mean flow, fundamental and second harmonic components of the solution are
obtained via solution of the following problems.

A.1. Mean-flow component

∂4Φ2,0

∂Y
4

= ik

[
∂Φ1,−1
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]
, (A 16)

Y → ∞ : Φ2,0 = Yλ(A2,0 + f2,0), Y = 0: Φ2,0 =
∂Φ2,0

∂Y
= 0, (A 17a, b)

P2,0 = 0. (A 18a, b)

A.2. Fundamental component
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194 M. Vlachomitrou and N. Pelekasis

Y → ∞ : Φ2,1 = Yλ(A2,1 + f2,1), Y = 0: Φ2,1 =
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A.3. Second-harmonic component
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Y → ∞ : Φ2,2 = Yλ(A2,2 + f2,2), Y = 0: Φ2,2 =
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and similarly for the complex-conjugate quantities.
The fundamental component of the O(ε3) problem satisfies the following set of

equations:
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, (A 27)

Y → ∞ : Φ3,1 = Yλ(A3,1 + f3,1), Y = 0: Φ3,1 =
∂Φ3,1

∂Y
= 0, (A 28a, b)

P3,1 = kA3,1 − i
∂A2,1

∂ζ
− i

∂A1,1

∂ζ1

, (A 29)

−Cpf3,1ik − CG

∂f2,1

∂ζ
+

∂f2,1

∂τ
+ f1,1ω

′
i − CG

∂d

∂ζ1

= RL + RNL + R01, (A 30)

and similarly for the complex-conjugate quantities. The parameter ωi ≡ ε2ω′
i = O(ε2)

near criticality and consequently the time derivative of the term eωi t ≈ eω′
i ε

2t =eω′
i τ ,

signifying that linear growth contributes to O(ε3). Linear and nonlinear terms on



Short- to long-wave resonance and soliton formation 195

the left-hand side of (A 30) are grouped in RL and RNL, respectively, whereas terms
arising as a result of interaction between the fundamental and mean-flow components
are grouped in R01. Equations (A 29) and (A 30) admit a solution of the form

f3,1 = e − ∂d

∂ζ1

C
15λ0.259i(ikλ)2/3 − k2
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21/3k
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3
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0

Ψ2,1,P dτ

)]
, b′ = b/d2, (A 31)

and similarly for the complex conjugate; e is an as yet undetermined constant and
Ψ3,1,P (z) is the particular solution of the equation governing variations of the stream
function to O(ε3). Similar solutions are obtained for the rest of the unknowns.

As can be gleaned from (A 30) the coefficient of the second-order component of
the mean flow, f2,0, participates in the dynamics of the fundamental component f3,1.
However, the former component, f2,0, is left undetermined in the context of the O(ε2)
problem. Focusing on the evolution equation of the interface to O(ε3) and isolating
terms concerning the mean flow E◦, we obtain the following relation:

(H0λ− CG)
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= −H 2

0

2
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2
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[
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We
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[(ik)3f1,1f1,−1

+ (−ik)3f1,1f1,−1] +
H 2
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Fr

∂
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[(−ik)f1,1f1,−1 + (ik)f1,1f1,−1], (A 32)

which involves only first- and second-order quantities and serves to determine f2,0

and d along with (A 30).
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